Data Analytics Platform

Data Warehouse, Data Lake, and the Modern Data Cloud

Rowi Fajar Muhammad, SI 2012

Outline

- Introduction
- The history of Data Analytics Platform
- Use Cases
- Snowflake Data Platform, Deep Dive

Traditional Data Warehouse

- Structured and data
- Optimized for complex query
- High performance, incl. indexing and partitioning
- Strong Data Governance
- Integration with BI

Typical Big Data / Data Lake Architecture

The Big Data Architecture

The Big Data Architecture (Pros)

- Flexibility and Scalability to support large and diverse datasets
- Support of Raw and Unprocessed Data, process the data in its original form
- Separation of compute, storage. Independent scaling between them
- Advanced Data Analytics, incl. AI&ML
- Data Governance

Hadoop Component Platform

- Storage
 - HDFS
 - AWS S3
- Processing Engine
 - YARN
 - MapReduce
- Metadata Layer
 - Hive Metastore

- Query Engine
 - Hive
 - Impala
- Framework & Processing
 - Apache Spark
 - Flink
- Streaming Platform
 - Kafka

The Big Data Architecture (Pros)

- Hard to manage, need to maintain each component separately
- For On-Prem env, need a huge investment upfront while the workload is dynamic.
- Latency and performance issues,
 - Big Data designed for large-scale batch processing
 - For real-time, it has a big latency
 - Resource pooling and management affecting this issues to

File Format

- JSON
- CSV
- Row Based Format
 - Avro
- Columnar Based
 - ORC
 - Parquet
 - Spark

Data Lakehouse

- Basically a combination of Data Lake + Data Warehouse
- Put the raw and staging data into Data Lake, then the Data Mart put into Data Warehouse

Typical Data Lake House Architecture

AWS Data Analytics Architecture

Snowflake Architecture

Use Cases

Rowi Fajar Muhammad, SI 2012

Precision Forestry

Image Capture by Using Drone Image &
Spatial Data
Analysis

Data Visualization

Apps Integration

A drone flying on top of forestry, capturing ~20 HA. Image size ~5GB Computer
Vision +
Geospatial is
used to do
image
analysis,
providing the
insight

Data is being visualized, both image, analysis result and geospatial data

The Insight is pushed into several apps, incl. Mobile
Apps for worker and ERP to make
Work Order

Result : More accurate analysis (5% sample vs 80% accuracy), faster (a month vs 2 days)

Automoti ve Industry

Data Ingestion

ETL & Machine Learning

Data Visualization

Apps Integration

Data
Ingestion
from data
source to Big
Data Platform

Create a data pipeline.
Leverage machine learning to generate use case, and create a data mart

Data is being visualized, based on the analysis

The insight pushed into company internal ERP

Result: Targeted marketing, more accurate segmentation

Data Warehou se Migration

ETL Refactoring

Apps Integration

Data
Ingestion
from data
source to Big
Data
Platform.
Could be
batch or real-
time

Check the data quality ingestion, make sure it meets the business standard

Refactor the ETL/ data pipeline based on existing pipeline

Re-pointing
any apps that
has been
connected
previously by
using DB
Connector
(JDBC,ODBC,
etc.)

Result: Faster Insight Generation, More Efficient Wrokload