UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF INTELLIGENT ELECTRICAL AND INFORMATICS TECHNOLOGY

Module name	Electric Circuits		
Module level	Undergraduate		
Code	EW184003		
Courses (if	Electric Circuits		
applicable)	Liectife Circuits		
Semester	Elective		
Contact person	Dr. Rahmat Setiawan		
Lecturer	Dr. Rahmat Setiawan		
	Indonesia		
Language Relation to	Undergraduate degree program, elective semester.		
curriculum	ondergraduate degree program, elective semester.		
Type of teaching,	Lecture, < 60 students, 170 minutes * SKS		
contact hours	Lecture, 100 stadents, 170 minutes 500		
Workload	1. Lectures: 2 x 50 = 100 minutes (1.8 hours) per week.		
	2. Exercises and Assignments: 2x 60 = 120 minutes (2 hou	rs) per	
	week.		
	3. Private study: 2 x 60 = 120 minutes (2 hours) per week.		
Credit points	3 credit points (sks).		
Requirements	A student must have attended at least 75% of the lectures to sit in		
according to the	the exams.		
examination			
regulations			
Mandatory	KM184101 Mathematics I		
prerequisites	CLO 1 Students are able to explain two basis laws of the	DI O 2	
Learning outcomes and	CLO-1 Students are able to explain two basic laws of the circuit (Ohm's Law and Kirchhoff's Law)	PLO-3 PLO-4	
their	·		
corresponding	CLO-2 Students are able to explain explain two methods of analysis (nodes and mesh) and some useful	PLO-3 PLO-4	
PLOs	circuit methods	PLO-4	
	CLO-3 Students are able to design circuit using capacitor,	PLO-5	
	resistor and inductor	. 20 0	
	CLO-4 Students are able to practice design and tuning	PLO-9	
	electric circuit	FLO-3	
	Ciccura circuit		
Content	Electric Circuit course discusses the basic concepts of the electric		
	circuit and its analysis. The course including two basic laws of the		
	circuit (Ohm's Law and Kirchhoff's Law), two methods of ar	•	
	(nodes and mesh), some useful circuit methods (superposit theorem, thevenin equivalent circuit, Norton equivalent circuit,		
	and maximum power transfer). The next topic of discussion		
	principle of capacitors and inductors, responses of circuits		
	capacitor or inductor (first order circuit), and responses of		
	with resistor, capacitor and inductor (second order circuit)		

	series and parallel circuits
Study and examination requirements and forms of examination	 In-class exercises Quiz 1 and 2 Assignment 1, 2, 3 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom).
Assessments and Evaluation	CLO-1: Question no 1 in midterm exam (15%) CLO-2: Question no 2 in midterm exam (15%) CLO-3: Assignment 1 (5%), question no 4 in midterm exam (20%), Quiz 2 (5%) CLO-4: Question no 1 in final exam (20%), question no 2 in final exam (20%)
Reading List	 [1] Electric Circuits, Lecture Notes. [2] Pujiono, Rangkaian Listrik, Graha Ilmu, 2010. [3] WH Hayt, JE Kemmerly, and SM Durbin, Engineering Circuit Analysis, McGraw Hill, 8 th Edition, 2007. [4] CK Aexander and MNO Sadiku, Fundamental of Electric Circuit, McGraw Hill, 8th Edition, 2013.