

MODULE HANDBOOK MATHEMATICAL LOGIC

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK MATHEMATICAL LOGIC

Module name	Mathematical Logic
Module level	Undergradute
Code	KM184102
Course (if applicable)	Mathematical Logic
Semester	Fall (Gasal)
Person responsible for	Dr. Drs. Mahmud Yunus, M.SI
the module	
Lecturer	Dr. Drs. Mahmud Yunus, M.Si
	Drs. Soetrisno, MIKomp
	Drs. Sadjidon, M.Si
Language	Bahasa Indonesia and English
Relation to curriculum	Undergradute degree program, mandatory , 1 st semester.
Type of teaching,	Lectures, <60 students
contact hours	Tuesdays, 11.00-12.50 (GMT+7)
Workload	1. Lectures: 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per
	week.
0 10 1	3. Private learning: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the examination	the exams.
regulations Mandatory	
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding ILOs	
corresponding izos	CLO-1 : Students are able to compile and compare logical true statements.
	CLO-2 : Students are able to apply inference rules to prove
	the validity of an argument in propositional logic.
	CLO-3 : Students are able to apply predicate logic
	inference rules to prove the validity of an argument
	involving universal or existential quarters.
	CLO-4 : Students are able to apply the basic characteristics
	of set theory in proof of argumentation.

Module Handbook: Mathematical Logic - 2

CLO-5 : Students are able to explain the relation of
fundamental concepts of mathematical logic and with
other branches of science.
In this course students will learn about the basic terms of logic, Sentential
Logic, truth tables and tautology, Inference Theory: argumentation, proof;
Predicate Logic: use of quarters, inference involving quanters and
introduction to set theory. In classroom learning, students will be given an
understanding and explanation related to the material being taught
according to the teaching material. Besides that, they were given tasks that
lead to independent study and group work.
Assignment 1 & 2
Mid-term examination
Final examination
LCD, whiteboard, websites (myITS Classroom), zoom.
Main:
1. Howard Anton and Chris Rorrers, "Elementary Linear Algebra,
Tenth Edition", John Wiley and Sons, (2010).
Supporting:
1. C.D. Meyer,"Matrix Analysis and Applied Linear Algebra",
SIAM, (2000)
2. Steven J. Leon, "Linear Algebra with Applications", Seventh
Edition, Pearson Prentice Hall, (2006).
3. Stephen Andrilli and David Hecker,"Elementary Linear Algebra,
Fourth Edition", Elsevier, (2010)
4. Subiono., "Ajabar Linier", Jurusan Matematika FMIPA-ITS, 2016