

MODULE HANDBOOK OPERATION RESEARCH I

BACHELOR DEGREE PROGRAM DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND DATA ANALYTICS

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

MODULE HANDBOOK OPERATION RESEARCH I

Module name	Operation Research I
Module level	Undergraduate
Code	KM184302
Course (if applicable)	Operation Research I
Semester	Fall (Ganjil)
Person responsible for	Dr. Valeriana Lukitosari, S.Si, MT
the module	
Lecturers	Dr. Valeriana Lukitosari, S.Si, MT
	Drs. Sentot Didik Surjanto, M.Si
	Drs. Suhud Wahyudi, M.Si
Language	Indonesia and English
Relation to curriculum	Undergraduate degree program, mandatory , 3 rd semester.
Type of teaching,	Lectures, <60 students
contact hours	
Workload	1. Lectures : 3 x 50 = 150 minutes per week.
	2. Exercises and Assignments : 3 x 60 = 180 minutes (3 hours) per
	week.
	3. Private learning : 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in
according to the	the exams.
examination	
regulations Mandatory	Elementary Linear Algebra
prerequisites	
Learning outcomes	Course Learning Outcome (CLO) after completing this
and their	module,
corresponding PLOs	CLO-1 Be able to understand optimization problems in a
	real phenomenon in operations research and solve them
	using existing methods.
	CLO-2 Be able to identify simple problems in transportation
	problems, linear programming, assignments and form
	mathematical models using existing methods.
	CLO-3 Be able to provide optimal alternative solutions for
Cantant	simple problems.
Content	This subject is the basis of mathematical modeling, especially linear
	and non-probabilistic ones.

	The scope of this course covers the use of mathematics in management problems, especially in decision making based on simple mathematical modeling of real problems
Study and examination requirements and forms of examination	 simple mathematical modeling of real problems. In-class exercises Assignment 1, 2 Mid-term examination Final examination
Media employed	LCD, whiteboard, websites (myITS Classroom), zoom.
Reading lists	 Main: 1. F.S. Hillier & G.J. Lieberman (2005), "Introduction to Operations Research", Eighth Editions, McGraw-Hill Publishing Company, Singapore. 2. Taha, Hamdy A (2007), "Introduction to Operations Research", Fifth Editions, Prentice Hall Inc., Englewood Cliffs, New Jersey. Supporting: H.M. Wagner (1972), "Principles of Operations Research", Prentice-Hall, Inc., London. Winston (1994), "Operation Research Applications and Algorithms", Duxbury Press Belmont, California.

Module Handbook: Operation Research I - 4