QMIPACore Competences #### **Statistics** - Data Analytics - Data Representations ## **Optimization** Searching for the best alternatives (maximum / minimum) ### **Simulation** - Real system interpretations - Multiple iterations ## **QMIPA** *Main Course* : Case Based / Project Based ## **Course Content (1 of 2)** | Statistics 1 | Statistics 2 | Statistics 3 | Operations Research 1 | Operations Research 2 | |---|--|--|---|---| | Descriptive Statistics Basic Probability Theory Distribution (Discrete and | Hypothesis testing
(1 and 2 samples) ANOVA Correlation Analysis Simple linear
regression Non-parametric
statistics | Data manipulation Multiple linear regression Cluster analysis Principal Component Analysis Linear Discriminant Analysis Factor Analysis | Problem formulation Graphical solution SIMPLEX method Sensitivity analysis Network problems (transportation, transshipment, assignment, shortest route) | Integer Programming Branch and Bound Goal Programming Dynamic Programming Game theory Markov Chain Queuing Theory Non-Linear Problem | ## **Course Content (2 of 2)** | Industrial System Simulation | Data Analytics | System Modelling | |---|---|---| | System Dynamics Simulation Basics Discrete Event Simulation Monte Carlo Simulation Conceptual Model Building Data Collection and Input
Analysis Verification and Validation Output Analysis Comparing Systems &
Scenarios | Data Preparation & Preprocessing Multiple Linear Regression Cluster Analysis: K-Means and Hierarchical Clustering) Classification Technique: Naïve Bayes, Decision Tree, and Artificial Neural Network Association Analysis | System Thinking and System Concepts The Problem Situation System Models and Diagrams Hard OR methodology Soft System Thinking Decision Making Over Time Incremental Analysis Constrained Decision Making | ## **QMIPA** *Elective Course* Optimization **Game Theory** **Metaheuristics** **Multi Criteria Decision Making** **Statistics** Data Mining Decision Analysis Simulation **Agent Based System Modelling** **Applied Discrete Simulation** System Dynamic Methodology ### **DECISION SYSTEMS** ### Master Program #### 1st Semester - Adv. Industrial Statistics (2 SKS) - Adv. Operations Research (3 SKS) - Cost & Investment Mgmt. (2 SKS) - Adv. PPIC (3 SKS) #### 2nd Semester - Data Analytics (3 SKS) - Industrial System Policy Design & Analysis (3 SKS) - Research Methodology (2 SKS) - Elective Course 1 (3 SKS) #### 3rd Semester - Metaheuristics (3 SKS) - Discrete Event Simulation (3 SKS) - Proposal Seminar (3 SKS) #### 4th Semester Thesis (6 SKS) #### **Elective Courses:** - 1. Contemporary Game Theory - 2. Data Mining with Application # QUANTITATIVE MODELLING & INDUSTRIAL POLICY ANALYSIS ### Doctoral Program