10. MO18-5206 Experimental Design and Data Analysis

Module name	Experimental Design and Data Analysis		
Module level, if applicable	Master		
Code, if applicable	MO18-5206		
Subtitle, if applicable	-		
Course, if applicable	Experimental Design and Data Analysis		
Semester	2 nd Semester		
Person responsible	R. Haryo Dwito A., S.T., M.Eng., Ph.D.		
for the module	Prof. Ir. Mukhtasor , M.Eng., Ph.D.		
Lecturer	R. Haryo Dwito A., S.T., M.Eng., Ph.D.		
	Prof. Ir. Mukhtasor , M.Eng., Ph.D.		
Language	Indonesian		
Relation to curriculum	Elective course for master degree program in Ocean Engineering		
Type of teaching,	Lecture, <50 students		
contact hours	150 minutes x 16 weeks per semester		
Workload	1. Class, $3 \times 50' = 150$ minutes per week		
	 Independent Study, 3 × 60' = 180 minutes per week Structured Activities, 3 × 60' = 180 minutes per week 		
Credit points	3 CREDITS ~ 4.8 ECTS CREDITS × 1.6 ECTS		
Requirements according	A student must have attended at least 80% of the lectures to sit in the		
to the examination regulations	exams.		
Deserves de d			
rerequisites	-		

Learning outcomes and their corresponding PLOs	 CLO.1. Able to understand concepts and can perform the Dimensional Analysis CLO.2. Able to understand physical phenomena and can perform modeling technique, based on the concept of dimensional analysis CLO.3. Able to understand the design procedure in designing physical model experiments CLO.4. Able to understand statistical concepts used in the analysis of experimental results and perform multiparameter regression LO.3. Able to carry out scientific and technological development in ocean engineering through independent research
Content	This course guides the students along the correct road to perform physical model to get experimentally constants and coefficient used to obtain a fairly complete definition of physical process under investigation. Furthermore, the design of experimen and the analysis process of the experimental results will be discussed. <u>1</u> . Theory <u>a</u> . Dimensional Analysis <u>b</u> . Similarity Theory and Similitude Analysis <u>c</u> . Method of Synthesis <u>d</u> . Scaling and Scale Errors <u>2</u> . Practice <u>a</u> . Model Technique <u>b</u> . Model of Coastal Structure <u>c</u> . Model of Coastal Structure <u>c</u> . Model of Coastal Processes <u>d</u> . Model of Thermal and Effluent Outfalls <u>3</u> . Analysis <u>a</u> . Design of Experiment <u>b</u> . Multi Parameter Regression <u>c</u> . Uncertainty and error <u>d</u> . Experiment variable validation <u>e</u> . Covariance analysis <u>f</u> . Sensitivity analysis
Study and examination	11. In-class exercise
requirements and forms	12. Assignment
of examination	13. Mid-term exam
	14. Final exam
Media employed	Offline: LCD, whiteboard, PowerPoint presentation
	Online: websites (myITS Classroom), Zoom, Microsoft Teams, PowerPoint presentation.

Reading list	1.	Physical modelling in coastal engineering / edited by Robert A.
		Dalrymple, 1985.
	2.	Physical Models and Laboratory Techniques in Coastal Engineering
		Steven A. Hughes, World Scientific, 1993
	3.	Hydraulic modeling: J.J. Sharp. The Butterworth Group, London-
		Boston-Sydney-Wellington-Durban-Toronto, 1981. 242 pp
	4.	Fundamental of Fluid Mechanics, Donald F. Young, Bruce R.
		Munson, Theodore H. Okiishi, John-Wiley & Son, 1990
	5.	Design and Analysis of Experiments, Douglas C Montgomery,
		Douglas C Montgomery, Wiley; 3rd edition, 1991
	6.	A first course in design and analysis of experiments, Gary W
		Oehlert