Waste Water Treatment Laboratory

INDUSTRIAL AND BIOMASS WASTE TREATMENT LABORATORY

About Research Topics and Lab Publications. Industrial Waste and Biomass Treatment

Labs. Industrial Waste and Biomass Treatment (PLI and Biomass) currently consists of Ir Nuniek Hendrianie, MT., Dr. Ir. Sri Rachmania Juliastuti, M. Eng., Dr. Eng. R. Darmawan, ST., MT., and Orchidea Rachmaniah, ST., MT.

This laboratory is engaged in the area of ​​industrial waste treatment, both biologically and physically and chemically.

The leading research topics carried out are:

  1. Study on the Effect of Inhibitors on the Maximum Specific Growth Rate of Denitrification in the Activated Sludge Process.
  2. Anaerobic active sludge treatment with artificial neural network and utilization of bio gas as energy substitution.
  3. Utilization of Solid Organic Waste, Lapindo Mud, in electricity production using Microbial Fuel Cell
  4. Study on the performance of the continuous system of Dissolved Air Flotation (DAF) on reducing oil and COD levels of Pertamina DOH Waste, West Java-Balongan
  5. Study of the performance of Dissolved Air Flotation on reducing oil content in wastewater.
  6. Making biogas from sludge
  7. Study of Decolorization of Textile Industry Liquid Waste by using Alum, PAC or MgCl2.
  8. Reducing Ammonia Levels in PT Petrokimia’s Liquid Waste by Using Kerosene Liquid Membrane with SPAN 80 Surfactant.
  9. Effect of H2O2 on Aerobic Biological Waste Formaldehyde Treatment
  10. Electroplating Waste Heavy Metal Adsorption with Shrimp Shell
  11. Siloxane removal in biogas with activated carbon adsorber
  12. Anaerobic Production of Biogas from Cow Manure.
  13. Oily Waste Chlorination
  14. Plastic Waste Pyrolysis for Oil Fuel Production
  15. Production of Solid/Liquid Organic Fertilizer from Agricultural Waste
  16. Reducing PAH/BTX levels using microbes
  17. Reduction of metal content using immobilized microbe

HEAD OF LABORATORY

197802142003122001_Teknik Kimia

Orchidea Rachmaniah, S.T., M.T.

Email : orchidea@chem-eng.its.ac.id

Expertise :

  1. Renewable Energy
  2. Natural Products
  3. Biomass Energy
  4. Biomass Utilization

MEMBERS

195907301986032001_Dr. Ir. Sri Rachmania Juliastuti, M.Eng

Dr. Ir. Sri Rachmania Juliastuti, M.Eng.

Email : juliaz30@chem-eng.its.ac.id

Bidang Keahlian :

  1. Pengolahan Limbah Industri
195711111986012001_Ir. Nuniek Hendrianie., MT

Ir. Nuniek Handrianie, M.T.

Email : nuniek@chem-eng.its.ac.id

Bidang Keahlian :

  1. Operasi Teknik Kimia
  2. Pengolahan Limbah Industri
  3. Mikrobiologi
197805062009121001_Dr. Eng. Raden Darmawan, S.T., M.T.

Dr.Eng. Raden Darmawan, S.T., M.T

Email : rdarmawan@chem-eng.its.ac.id

Bidang Keahlian :

  1. Bioteknologi
  2. Biodegradasi
  3. Bioremediasi
  4. Microbial Fuel Cells (MFCs)

RESEARCH

Research Year:

Click the year below to see details of the study :

2021

2020

2019

PUBLICATION

Scientific Publication Year:

Click the year below to view details of scientific publications.

2021

2020

2019

2018

2017

2016

2015

2014

COMMUNITY DEDICATION

Community Development :

Click the year below to see details of community development.

2021

2020

FACTORY PREDESIGN TITLE

Pre Design of Lignocellulosic Fractionation Plant from OPEFB by Steam Explosion method

ANIMATED VIDEOS

MOCKUP VIDEOS

DESCRIPTION

PRE DESIGN OF FACTORY “LIGNOCELLULOSE FRACINATION FROM OPEFB USING STEAM EXPLOSION METHOD

description

Utilization of renewable natural resources, today, through the application of new and sophisticated chemical process technologies or through modification of existing processes provides enormous new results and opportunities. Lignocellulosic is one of the renewable resources, biomass, whose availability is very abundant.

Currently, biomass such as firewood, agricultural waste is generally used as fuel for cooking, fuel for boilers and other thermal processes in small and medium-sized industries. However, it can also be converted into gaseous and liquid fuels such as in the form of ethanol and biodiesel through a fermentation process or a reaction process.

As the world’s largest producer of palm oil, the potential availability of biomass in the form of empty oil palm fruit bunches (TKKS) is also abundant. As a prediction, one ton of fresh fruit bunches (FFB) of palm oil that is processed will produce 23% empty fruit bunches. OPEFB has great potential to be utilized because of its lignocellulosic content. Therefore, the task of this factory design is to utilize OPEFB biomass waste to produce intermediate products (lignin, cellulose, and hemicellulose) through the steam explosion method.

 

Process Description

The description of the process offered is divided into three process areas, namely: Pre-treatment which functions to clean raw materials and reduce their size; the second area, fractionation, is to separate hemicellulose from EFB that has gone through a pre-treatment process and to dissolve lignin from cellulose. Next, the third process area, the precipitation process, with the addition of strong acid to precipitate lignin from black liquor. The final area, the support area for the separation and drying process.

Before being processed, OPEFB undergoes a pre-treatment process through washing, size reduction and drying. OPEFB from the storage warehouse (F-110) is transferred using a belt conveyor (J-111) to a washing process (Rotary Washer, A-120) to remove impurities. The clean EFB is transported by bucket elevator (J-125) to be reduced in size to 8 – 12 mm in the shredder (C-130). The OPEFB fibers are then stored in the storage tank (F-134) and then enter the steam explosion reactor through the weigh belt feeder (J-135) and bucket elevator (J-136). At this stage, OPEFB is contacted with steam (200oC) for 10 minutes with a tank pressure of 16 bar. After the steam explosion is compressed, the treated EFB goes to the flash tank (F-141) and transported by screw conveyor (J-143) to the next process, fractionation.

In the fractionation stage, EFB which has been destroyed by the steam explosion process will go through two fractionation stages. In the first stage of extraction, OPEFB uses a screw conveyor (J-143) to a centrifuge (H-210) and is in contact with water (70oC), which is then separated by a centrifuge (H-210); This results in a supernatant containing mostly hemicellulose and water, and cake/pellet containing mostly cellulose and lignin. The supernatant containing hemicellulose and water then goes to the Hemicellulose Storage Tank (F-213). Meanwhile cake/pellet, cellulose and lignin, are further processed in the extraction reactor (R-220) using a screw conveyor (J-212).

The second stage of extraction took place in the extraction reactor (R-220) with the help of NaOH as a catalyst. The condition of the delignification reactor (R-220) had a consistency of NaOH 0.05 g/g fiber, 100°C, pH = 13 and 30 minutes. After the delignification process, the slurry is sent to the centrifuge (H-223) to be separated. Centrifuge (H-223) will produce a supernatant rich in lignin (black liquor) and a cake/pellet consisting of a large amount of cellulose and a small amount of residual lignin. This filtrate will proceed to the next process, the precipitation process. Meanwhile the cake/pellet is channeled to the tray dryer (B-225) to be dried, crushed in a fine crusher (C-226), then the cellulose powder produced is stored in a cellulose storage tank (F-229).

The black liquor solution from the centrifuge (H-223) will undergo a further process, the precipitation process. This precipitation process uses sulfuric acid to precipitate the lignin present in the black liquor. The precipitation process took place in a precipitation tank (F-230) with a temperature of 80°C, pH= 1.5-2.0 and a contact time of 10 minutes. The solution with the resulting lignin precipitate was then separated using a belt filter press (H-231), until 30% of the water content was successfully separated. Lignin in the form of cake is then dried using a tray dryer (B-232), crushed using a fine crusher (C-233), and then stored in a lignin storage tank (F-236).

Galeri